PNA-nitrogen mustard conjugates are effective suppressors of HER-2/neu and biological tools for recognition of PNA/DNA interactions.

نویسندگان

  • Zhanna V Zhilina
  • Amy J Ziemba
  • Peter E Nielsen
  • Scot W Ebbinghaus
چکیده

Peptide nucleic acids (PNAs) are promising tools for gene regulation. One of the challenges of using PNAs as gene regulators is the need to optimize the efficiency of interaction with critical sequences of DNA. To improve the efficiency of binding between PNAs and the HER-2/neu promoter, mono- and bis-pyrimidine-rich PNAs were conjugated to a nitrogen mustard at either the amino or carboxy terminus. Gel shift analysis demonstrated that conjugation to an alkylating agent slowed PNA binding and favored PNA:DNA:DNA triplex helix formation while preserving a high binding affinity. Sites of DNA alkylation were visualized by piperidine cleavage and showed PNA binding first by Hoogsteen bond formation with the target duplex to form a stable PNA:DNA:DNA triplex structure which is later converted to a PNA:DNA:PNA triple helix by strand invasion and Watson-Crick base pairing by a second PNA molecule. In this way, PNA-directed DNA alkylation was used to deduce the mode of PNA binding. Transient transfection experiments demonstrated that the PNA-nitrogen mustard conjugates suppressed HER-2/neu expression by up to 80%. In comparison with an unmodified mono-PNA or a bis-PNA, these results indicate that the covalent adducts stabilized PNA binding in cells and suggest that the conjugation of PNAs to nitrogen mustards is a robust strategy for developing antigene PNA oligonucleotides to prevent transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PNA–sugar conjugates as tools for the spatial screening of carbohydrate–lectin interactions*

Multivalent carbohydrate–lectin interactions are essential for a multitude of biological recognition events. Much effort has been spent in the synthesis of potent multivalent scaffolds in order to mimic or inhibit biological carbohydrate–protein interactions. However, the defined spatial presentation of carbohydrates remained a challenging task. Peptide nucleic acid (PNA)and DNA-based double he...

متن کامل

Targeting and regulation of the HER-2/neu oncogene promoter with bis-peptide nucleic acids.

Antigene oligonucleotides have the potential to regulate gene expression through site-specific DNA binding. However, in vivo applications have been hindered by inefficient cellular uptake, degradation, and strand displacement. Peptide nucleic acids (PNAs) address several of these problems, as they are resistant to degradation and bind DNA with high affinity. We designed two cationic pyrimidine ...

متن کامل

Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites.

Peptide nucleic acids (PNAs) are DNA-mimicking molecules in which the sugar-phosphate backbone is replaced by a pseudopeptide backbone composed of N-(2-aminoethyl)glycine units. We determined whether double-stranded molecules based on PNAs and PNA-DNA-PNA (PDP) chimeras could be capable of stable interactions with nuclear proteins belonging to the Sp1 transcription factor family and, therefore,...

متن کامل

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

Sequence-specific RNA cleavage by PNA conjugates of the metal-free artificial ribonuclease tris(2-aminobenzimidazole)

Tris(2-aminobenzimidazole) conjugates with antisense oligonucleotides are effective site-specific RNA cleavers. Their mechanism of action is independent of metal ions. Here we investigate conjugates with peptide nucleic acids (PNA). RNA degradation occurs with similar rates and substrate specificities as in experiments with DNA conjugates we performed earlier. Although aggregation phenomena are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioconjugate chemistry

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2006